
A Framework for Generating High Throughput CNN
Implementations on FPGAs

Hanqing Zeng
University of Southern California

Ming Hsieh Department of Electrical Engineering
zengh@usc.edu

Ren Chen
University of Southern California

Ming Hsieh Department of Electrical Engineering
renchen@usc.edu

Chi Zhang
University of Southern California
Department of Computer Science

zhan527@usc.edu

Viktor Prasanna
University of Southern California

Ming Hsieh Department of Electrical Engineering
prasanna@usc.edu

ABSTRACT

We propose a framework to generate highly efficient accelerators

for inferencing on FPGAs. Our framework consists of multiple

algorithmic optimizations for computation complexity and commu-

nication volume reduction, a mapping methodology for efficient

resource utilization, and a tool for automatic Verilog generation.

The algorithmic optimizations improve throughput of frequency

domain convolution so as to satisfy a given set of hardware con-

straints. While the Overlap-and-Add (OaA) technique has been

known, it performs "wasted" computation at the edges. We propose

a novel Concatenate-and-Pad (CaP) technique, which improves

OaA significantly by reducing the "wasted" computation on the

padded pixels. The proposed CaP used in conjunction with OaA

enables us to choose a fixed FFT size at design time, and achieve low

computation complexity for layers with various image sizes and

kernel window sizes. We also develop a novel frequency domain

loop tiling technique to further boost the throughput by improving

data reuse. Our mapping methodology optimizes the architecture

for the target device by fast design space exploration. We quantita-

tively categorize FPGAs by capturing their DSP resources, on-chip

memory size and external memory bandwidth into a device coeffi-

cient. We identify the optimal architectural parameters based on

the tradeoff between computation and communication cost. Our

framework includes a tool to automatically generate fully synthe-

sizable Verilog. We demonstrate the framework by generating

high throughput accelerators for state-of-the-art CNN models on

Intel HARP heterogeneous platform. Using our framework, we

achieve throughput of 780.6 GOPS , 669.1 GOPS and 552.1 GOPS

for AlexNet, VGG16 and FCN-16s respectively. These correspond

to 6.8× (AlexNet) and 4.9× (VGG16) improvement compared with

the state-of-the-art implementations.

KEYWORDS

Convolutional Neural Networks; Algorithmic Optimization; Hard-

ware Mapping; Software-Hardware Co-design; FPGA;

ACM Reference Format:

Hanqing Zeng, Ren Chen, Chi Zhang, and Viktor Prasanna. 2018. A Frame-

work for Generating High Throughput CNN Implementations on FPGAs. In

FPGA’18: 2018 ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays, February 25ś27, 2018, Monterey, CA, USA. ACM, New York, NY,

USA, 10 pages. https://doi.org/10.1145/3174243.3174265

1 INTRODUCTION

Convolutional Neural Networks (CNNs) are one of the most influen-

tial innovations in machine learning and computer vision [9, 15, 16].

With proliferation of deep learning models, the complexity and di-

versity of state-of-the-art CNNs has increased significantly.

Several challenges exist in accelerating CNNs on FPGAs:

• Computation complexity: Convolution layers of CNNs perform

computationally expensive operations.

• Hardware efficiency: Efficiently accelerating various convolu-

tion layers is hard, due to the large variation of CNN model

parameters across layers. The problems to be addressed are:

ś Reconfiguration: Hardware runtime reconfiguration can po-

tentially meet the diverse computational requirements of

various layers. However, time and resource overhead are

incurred to support the flexibility in hardware.

śWasted computation: Using fixed hardware for acceleration

avoids reconfiguration overhead. However, significant amount

of computation can be wasted due to padding.

ś Data reuse: Given an on-chip memory of limited size, the

accelerator needs to efficiently reuse on-chip data so as to

reduce the communication volume to external memory.

Motivated by the above challenges, we propose a framework to

generate high throughput accelerators for diverse CNNmodels. The

inputs of the framework are the CNNmodel parameters (image size,

kernel filter window size, number of input and output feature maps)

and the FPGA device meta data (DSP resources, on-chip memory

size and external bandwidth). The output is the automatically gen-

erated architecture on the target device specified in Verilog. To

address the computation complexity challenge, our framework alle-

viates the computation burden of spatial convolution by frequency

domain convolution. To address the hardware utilization challenge,

we solve the problems in reconfiguration, wasted computation and

data reuse by multiple algorithmic optimizations. The Overlap-and-

Add (OaA) operation has been used in [21] to implement frequency

domain convolution with a fixed-size FFT module. We significantly

improve the OaA approach by a novel Concatenate-and-Pad (CaP)

operation. Compared with OaA, CaP achieves much lower compu-

tation complexity by filling the paddings with pixels from other

images within the same batch. By applying CaP in conjunction with

OaA, we identify a fixed FFT size in design time. Thus, without run-

time reconfiguration, the accelerator achieves high throughput for

layers with diverse image sizes and kernel filter window sizes. We

further propose the frequency domain loop tiling technique which

partitions the data blocks returned from the CaP-OaA step. Total

communication volume to external memory is reduced as a result

of increased reuse of on-chip data. In summary, our algorithmic op-

timizations perform light weight data layout rearrangement so that

data from various layers are efficiently blocked into identical shapes

before loaded onto FPGA. To optimize the architecture based on

the FPGA resources, we then propose a hardware mapping method-

ology. A simplified performance model leads to fast design space

exploration, which identifies the optimal architectural parameters

by saturating the computation or communication capacity of the

target device. Finally, a tool is developed to automatically generate

implementations in Verilog. Our main contributions are:

•We propose algorithmic optimizations to improve throughput:

ś Concatenate-and-Pad (CaP) operation, a dual of Overlap-

and-Add (OaA), which significantly improves the OaA based

approach by reducing computation on paddings.

ś A data blocking methodology, which enables a fixed size FFT

module to achieve low computation complexity for layers

with various image and kernel window sizes.

ś Frequency domain loop tiling, which increases reuse of on-

chip data by partitioning the feature map dimensions.

•We propose hardware mapping that incorporates the above

algorithmic optimizations:

ś A generic architecture, which accelerates diverse CNNs on

the target device without runtime reconfiguration.

ś A device coefficient, which measures the computation and

communication capacity of the target FPGA by on-chip DSP

resources, memory size and external bandwidth.

ś Fast design space exploration methodology, which identifies

optimal architectural parameters on the target device.

•We develop a code generation tool that outputs fully synthe-

sizable Verilog based on the resulting hardware mapping.

•We show that on Intel HARP platform, our techniques lead to

throughput of 780.6 GOPS , 669.1 GOPS and 552.1 GOPS for

AlexNet, VGG16 and FCN-16s respectively. The throughput

corresponds to 6.8× (AlexNet) and 4.9× (VGG16) improvements

compared with the state-of-the-art designs.

2 BACKGROUND

2.1 Frequency Domain Convolution and
Overlap-and-Add (OaA)

We start from reviewing the convolution algorithm for 2D matrices.

Let I (shape: limд × limд) and K (shape: lkern × lkern) be the
input and kernel matrices. LetM (shape: l ′imд × l

′
imд) be the output

1

1 3, ,
2

1 . Fourier transform
2 . Hadamard product
3 . Inverse Fourier transform
4 . Sum of overlapping pixels

4

. ⨁ 	 ,. ⊖ & pada

b

a b

Figure 1: Frequency domain convolution using OaA

matrix. After transforming I and K into frequency domain repre-

sentation, the sliding window operation of space convolution turns

into the Hadamard product operation (◦). Equation 1 summarizes

the algorithm for frequency domain convolution, where F and

F
−1 denote Fourier transform and its inverse operation.

M = I ∗ K = F
−1 (

F (I) ◦F (K)
)

(1)

To perform the Hadamard product operation, dimensions limд ,

lkern of I , K need to be zero-padded to the same size before Fourier

transform. When limд is large (as is often the case for the first few

convolution layers of a CNN), computing FFT on the complete I is

not efficient. The Overlap-and-Add (OaA) technique [5] addresses

the problem by partitioning I before the Fourier transform step.

The following describes the procedures of computing I ∗K using

OaA. Suppose we convolve I with K using N -point 2D FFT units

(where N > lkern − 1). First, we partition I into P ini, j of shape

lpar t ×lpar t (where lpar t +lkern −1 = N). Then, after zero padding

P ini, j to shape N × N , we compute the intermediate output matrices

Pouti, j using Equation 2. The final output matrix M is obtained by

placing Pouti, j so that their up-left corners (pixel (0, 0)) are located

at pixels (i · lpar t , j · lpar t) of M . Value of each pixel in M is the

sum of the overlapping pixels in Pouti, j , as shown in Equation 3 and

Figure 1.

Pouti, j = F
−1 (

F (P ini, j) ◦F (K)
)

(2)

M[p][q] =
∑

i, j

(

Pouti, j [p − i · lpar t][q − j · lpar t]
)

where

0 ⩽ p − i · lpar t < lpar t

0 ⩽ q − j · lpar t < lpar t

(3)

Value enclosed by square brackets ([∗][∗]) indicates the pixel
index within the matrix. All indices i, j,p,q start from 0.

We define operators ⊖ and ⊕. Operation ⊖y (I) partitions I into
matrices of shape y ×y; ⊕−x (P) generates a large matrix from a set

of matrices {P } with x pixels overlapped, based on Equation 3.

2.2 Convolution Layers Using OaA

A convolution layer operates on a set of I and K , and outputs a set

of M . Define I layer , K layer and Mlayer as the high dimensional

arrays of input, kernel filters and output feature maps of a layer.

For batch processing, I layer , K layer andMlayer are of dimension

Batch × fin × limд
2, fout × fin × lkern2 and Batch × fout × l ′imд

2

respectively, where fin , fout are number of input, output feature

maps. Let b, n andm index into the Batch, fin and fout dimensions.

Equation 4 specifies the operations of a convolution layer.

M
layer

b,m
=
∑

n<fin

(I
layer

b,n
∗ K layer

m,n) (4)

Algorithm 1 shows the operations of a convolution layer using

OaA. Since K layer is fixed for a trained CNN, we calculate K f r eq =

F (K layer) prior to the CNN inferencing computation.

Algorithm 1: Batch processing of a convolution layer using

the OaA technique

Input : I layer of shape Batch × fin × limд
2

K f r eq of shape fout × fin × N 2

Output:Mlayer of shape Batch × fout × l ′imд
2

1 for b = 0 to (Batch − 1) do
2 for i, j iterating matrices of ⊖lpar t (I layer

b
) do

3 for n = 0 to (fin − 1) do
4 P

in,f r eq
n,i, j ← F (P

in,padded
n,i, j)

5 form = 0 to (fout − 1) do
6 for n = 0 to (fin − 1) do

// Element-wise MAC operation

7 P ′ ← P
in,f r eq
n,i, j ◦ K f r eq

m,n

8 P
out,f r eq
m,i, j ← P

out,f r eq
m,i, j + P ′

9 Poutm,i, j ← F
−1(Pout,f r eqm,i, j)

10 form = 0 to (fout − 1) do
11 M

layer

b,m
← ⊕−lkern+1(Poutm,∗,∗)

12 returnMlayer

2.3 CNN Applications and Models

Feature extraction is fundamental to many applications. With little

preprocessing on input images, CNNs extract high dimensional

features associated with receptive fields of various sizes. Thus,

variations of CNNs can be developed for specific applications.

We select three large scale state-of-the-art CNNs: AlexNet [9],

VGG16 [15] and FCN-16s [11]. AlexNet and VGG16 can perform the

tasks of feature extraction as well as image classification. FCN-16s is

designed specifically for image segmentation. For feature extraction

of AlexNet and VGG16, we execute all the convolution, ReLU and

pooling layers, and skip the final fully connected layers. The input

images can be of any limд value. For image classification of AlexNet

and VGG16, we execute all the layers including the fully-connected

layers. The input images are scaled to be 224 × 224 pixels before
feeding into the networks. For semantic segmentation of FCN-16s,

we deploy deconvolution layers to replace fully connected layers.

FCN-16s takes images of any limд value as its input.

The above three CNNs are representatives of a wide range of

recently developed deep CNNs. In general, the model parameters

limд , lkern , fin and fout change dramatically from the first con-

volution layer to the last. As an example, Table 1 summarizes the

variation of these parameters for AlexNet, VGG16 and FCN-16s.

Table 1: Variation of model parameters

CNN Conv. Layers lkern
max limд

min limд

max fin
min fin

max fout
min fout

AlexNet 5 11,5,3 17 128 4

VGG16 13 3 16 170 8

FCN-16s 18 7,3,1 50 1365 64

3 ALGORITHMIC OPTIMIZATIONS

Due to the large variation of lkern , limд , fin and fout , using a fixed

architecture to accelerate various CNN models, or even for various

layers of the same CNN model is very challenging. We show in

this section three algorithmic optimizations to block input data

into identical shapes after data layout rearrangement. As a result,

computation complexity and communication cost are reduced, and a

fixed hardware architecture (Section 4) on a target FPGA efficiently

accelerates various CNNs. We show the procedure of hardware

mapping and performance analysis in Section 5.

3.1 OaA Using Fixed FFT Size

For native frequency domain convolution, the FFT size is equal

to (limд + lkern − 1) and FFT is applied to the complete I at once

without partitioning. The native approach is hard to be realized by

accelerators, as hardware does not efficiently support FFT of arbi-

trary sizes. Previous work [21] addressed the hardware limitation

by using the OaA technique. Their complexity analysis was based

on 2D convolution without considering the fin and fout dimen-

sions. We show in this section a more accurate complexity analysis

on high dimensional convolution performed by a CNN layer. We

also discuss how to select an appropriate FFT size for various lkern .

According to Algorithm 1, for an FFT size N , number of opera-

tions performed by a convolution layer is calculated as:

(5)
Ototal =

(

Opar t,F FT +Opar t,MAC +Opar t, I F FT

+Opar t,OaA

)

·
⌈ limд

N − lkern + 1

⌉2

where:

Opar t,F FT = C1 · N 2 · logN · fin
Opar t, I F FT = C1 · N 2 · logN · fout
Opar t,MAC = C2 · N 2 · fin · fout
Opar t,OaA = C3 · N · (lkern − 1) · fout

C∗ are constants reflecting the cost of addition or multiplication.

We perform the following approximation to Equation 5: (1) Ig-

noring Opar t,F FT and Opar t, I F FT : OaA performs partitioning of

matrix I (limд : order of 10
1 or 102), so it is reasonable to assume N

to be in the order of 101. Observing that fin and fout are typically

in the order of 102, the coefficient logN ofOpar t,F FT (Opar t, I F FT)

is negligible compared with the coefficient fout (fin) ofOpar t,MAC .

(2) Ignoring Opar t,OaA: As required by OaA, (lkern − 1) should be

less than N . SoOpar t,OaA < C3 ·N 2 · fout ≪ Opar t,MAC . (3) Ignor-

ing the ceiling function: We will discuss the effect of ⌈∗⌉ in detail

in Section 3.2. We approximate Equation 5 by:

Algorithm 2: Batch processing of a convolution layer using

CaP-OaA and fin , fout loop tiling

Input : I layer of shape Batch × fin × limд
2

K f r eq of shape fout × fin × N 2; K f r eq = F (K layer)

Output:Mlayer of shape Batch × fout × l ′imд
2

1 for b = 0 to (Batch − 1), stride by D do // D = d2

2 form = 0 to (fout − 1), stride by f do

3 for n = 0 to (fin − 1), stride by f do

4 Î t ile ← ⊕lkern−1(I layer
b :b+D,n:n+f

)

5 Kt ile,f r eq ← K
f r eq

m:m+f ,n:n+f

/* FPGA starts to process tiled data. */

6 for i, j iterating matrices of ⊖lpar t (Î t ile) do
7 for n′ = 0 to (f − 1) do
8 P

in,f r eq
n′,i, j ← F (P

in,padded
n′,i, j)

9 form′ = 0 to (f − 1) do
10 for n′ = 0 to (f − 1) do
11 P ′ ← P

in,f r eq
n′,i, j ◦ Kt ile,f r eq

m′,n′

12 P
out,f r eq
m′,i, j ← P

out,f r eq
m′,i, j + P ′

13 Pout
m′,i, j ← F

−1(Pout,f r eq
m′,i, j)

/* FPGA ends processing. */

14 form′ = 0 to (f − 1) do
15 M ′ ← ⊕−lkern+1(Pout

m′,∗,∗)

16 M ′′ ← ReshapeM ′ to D × 1 × (limд)
2

17 M
layer

b :b+D,m+m′
← M

layer

b :b+D,m+m′
+M ′′

18 returnMlayer

the element-wise Hadamard product results in a clean data move-

ment pattern, so we simply calculate the amount of data reuse to

make our design choice. Reuse of image pixels are proportional

to f , and reuse of kernel pixels are proportional to the batch size.

We use the kernel-oriented data reuse scheme. Before execution, a

tile of kernel filters is pre-loaded onto FPGA. The kernel loading

time is amortized for a large enough batch. Our reuse scheme is

equivalent to loop interchanging of line 1 with 2, 3 in Algorithm 2.

4.2 Overall System Design

Based on Algorithm 2, we design the hardware modules on FPGA

to execute the workload from line 6 to 13. Prior to FPGA execu-

tion, a kernel filter tile Kt ile,f r eq is pre-loaded to on-chip memory

BUFK. When data streams in from external memory, a 2D FFT mod-

ule transforms partitions of I layer into frequency domain (lines 7,

8). Outputs of the FFT module are stored in the on-chip memory

BUFI. After reading matrices from BUFI and BUFK, the Hadamard-

Accumulation (HAC)module performs element-wise multiplication-

accumulation (lines 9 to 11). HAC feeds its accumulated outputs to

a 2D IFFT module, which transforms the partitions back to space

domain (line 13). The IFFT module sends its outputs directly to

external memory. Figure 6 shows the overall system design. Note

(1): (3): 𝑈 ⋅ 𝑁(2): 𝑁
BUF
BUF

… …SPN

1D

1D

1D

1D

(1)

(1)

… …

(2)

(3)

(3)
Parallel-Serial

(4) … …SPN

1D

1D

1D

1D

(4)

2D FFT 2D IFFTHAC

From external memory
To external memory

(4):

Figure 6: Overall FPGA architecture

that a small buffer is placed between the HAC and IFFT module. It

serves as a parallel-serial converter. We will see later on that data

parallelism of HAC should be larger than the IFFT module.

HAC module. The key benefit of frequency domain convolution

is that sliding window operation in spatial convolution turns into

Hadamard product operation. Thus, all loop carried dependencies

are automatically eliminated. Massive parallelism can then be ex-

ploited by the HAC module. Based on the FPGA resources, we

unroll the loop of line 9, Algorithm 2. Each cycle, HAC takes as

input UK slices of N × N matrices from BUFK, and 1 slice from

BUFI. Each slice is also fully unrolled to a 1D array of length N 2.

Thus, data parallelism of HAC isUK ·N 2. Every f 2/UK cycles, HAC

traverses the f 2 slices of Kt ile,f r eq . During the period, f slices of

inputs are read from BUFI, and each slice is reused for f times. On

the output side, f slices are generated and fed in the IFFT module.

Throughput of HAC is thusUK · N
2

f
.

2D FFT (IFFT) module. FFT on a N × N complex number matrix

involves two computation phases. In both phases, N -point 1D FFT

is performed on each of the N rows of the 2D matrix. Input to phase

1 is the original matrix. Input to phase 2 is the transposed output

matrix of phase 1. For each phase, a straightforward implementation

deploys N 1D FFT pipelines where each 1D FFT pipeline supports

data parallelism of N . Since the throughput of 2D FFT is bounded

by the external memory bandwidth and the throughput of the

HAC module, we may either increase the data parallelism of 2D

FFT by unrolling the loop in line 7 in Algorithm 2, or decrease

the parallelism by folding the FFT pipelines. Under the current

memory technology, it is very unlikely that the external bandwidth

is large enough to transfer more than N 2 complex words per cycle

(N : order of 101 or 102). Thus, we set the FFT unrolling factor to

be 1. Folding can be performed along each of the two dimensions.

Let Fcol and Frow be the column and row folding factors. Column

folding reduces the number of 1D FFT pipelines fromN to N
Fcol

. Row

folding reduces data parallelism of each 1D FFT pipeline from N to
N

Frow
[2]. Data parallelism of the 2D FFT module is thus N

Fcol
· N
Frow

.

Matrix transpose between phase 1 and phase 2 for the 2D FFT

architecture is implemented by a Streaming Permutation Network

(SPN) [2]. The resource efficient in-place permutation in time algo-

rithm of SPN requires a single port memory of size N 2 to support

data parallelism of N
Fcol
· N
Frow

.

For the 2D IFFT module, we use the same architectural parame-

ters as 2D FFT (Fcol and Frow).

On-chip memory. Data in BUFI are reused f times (f /UK times

temporal reuse,UK times spatial reuse) before they are replaced by

the next tile. Thus, we use the double buffering technique for BUFI.

Data communication latency is completely hidden if throughput of

HAC is no less than the streaming FFT module (Section 5.1). BUFK
and BUFI store one kernel tile and one image tile respectively. So

the BUFK size isMK = f 2 · N 2 and the BUFI size isMI = f · N 2.

5 ARCHITECTURE MAPPING

Define M, L as the total memory size and DSP resources on chip, B

as the total external memory bandwidth.

5.1 Performance Model

By our data reuse scheme, we ignore the kernel communication

cost and utilize the full bandwidth B to read and write image tiles.

By calculating the throughput of each individual hardware mod-

ule, we derive the overall system throughput Rsys :

Rsys = min
{

N

Fcol
· N

Frow
, UK ·

N 2

f
,

1

2
· B
}

(9)

To execute one layer for a batch of complex images, we first keep

one kernel tile in BUFK, and load the image tiles belonging to Î one

by one into BUFI. Then we replace the data in BUFK with the next

kernel tile belonging to the same layer, and repeat the loading of

image tiles. The execution time averaged for one input I is:

timд =
⌈ fin
f

⌉
·
⌈ fout

f

⌉
·
⌈ l̂imд

N − lkern + 1

⌉2 × f · N 2

Rsys
× 1

d2
(10)

We may further simplify Rsys . First of all, we observe that the

architectural parameters should be set such that throughput of FFT,

IFFT and HAC are matched. Secondly, for L andM, we observe that:

(1) Most of the DSP resources are consumed by the HAC module

to perform Hadamard product. This observation is consistent with

the conclusion in Section 3.1. (2) Most of the on-chip memory is

consumed by the kernel tile. The size of the kernel tile is in the

order of f 2 · N 2, and the size of the image tile is in the order of

f · N 2. Thus, we approximate Rsys as follows.

Rsys = min
{

N · L
√
M
,

1

2
· B
}

(11)

We then get throughput of a convolution layer by timд and Rsys .

5.2 Device Coefficient

The two terms in Equation 11 show the potential computation and

communication bounds of the target device. As N increases, the

system shifts from being computation bound to communication

bound. We analyze the system performance for various N . Based

on this, we quantitatively categorize FPGA devices by L,M and B.

Case 1: small N . The system throughput Rsys is determined by L

andM. SoRsys = N · L√
M
. By approximating

⌈
fin
f

⌉
·
⌈
fout
f

⌉
≈ fin

f
· fout

f

and
⌈ Elimд

N−lkern+1
⌉
≈ d ·(limд+lkern−1)

N−lkern+1 . We update Equation 10:

t ′imд ≈ fin · fout · (limд + lkern − 1)2 ·
(

N

N − lkern + 1

)2
· 1
L

(12)

Case 2: large N . The system throughput Rsys is determined by B.

Therefore, Rsys = 1
2 ·B. By approximating

⌈
fin
f

⌉
·
⌈
fout
f

⌉
≈ fin

f
· fout

f

and N
N−lkern+1 ≈ 1. We derive Equation 10 as:

t ′′imд ≈ fin · fout · (limд + lkern − 1)2 · (2 · N) · 1
√
M · B

(13)

As N grows from a small value, latency t ′imд decreases due to

lower computation complexity (Section 3.1). However, with limited

on-chip memory size, larger N means smaller f and lesser data

reuse. At some point, external bandwidth saturates. As N increases,

latency t ′′imд becomes larger, since communication cost then be-

comes the dominant factor. When sweeping N , expressions on

the right side of Equation 12 and 13 forms two curves, which are

the performance asymptotic bounds. We define the common term

fin · fout · (limд + lkern − 1)2 as the model coefficient KCNN, which

scales performance of the architecture by the complexity of CNN.

Imagine a device with infinite bandwidth B. It is never bound by

communication. Thus, itsmaximal achievable throughput according

to Equation 12 is Rmax
comp = max 1

t ′imд
= 1

KCNN
· L, which is the

theoretical computational upper bound.

Dividing the reciprocal of t ′imд and t ′′imд by Rmax
comp , we get the

asymptotic bounds for normalized throughput:

Ccomp (N) =
(

N − lkern + 1

N

)2

Ccomm (N) =
(

B ·M
1
2 · L−1

)

·
(

1

2 · N

)
(14)

We define KFPGA = B ·M
1
2 · L−1 as the device coefficient. For a

target device, it measures the ratio of communication capacity over

computation capacity. Based on KFPGA, we map the architecture

onto the target device by balancing the computation complexity and

data reuse. Details of the mapping are shown in the next section.

5.3 Design Space Exploration

We note some important properties of Ccomp and Ccomm . The

model coefficient KCNN disappears in the process of normalization.

Furthermore, KFPGA captures the device characteristics in Ccomm .

For diverse CNNs, we can use a constant lkern (= 3) to approximate

Ccomp , so the computation bound is a single curve. On the other

hand, for a given target device, the communication bound is also

a single curve since KFPGA keeps as a constant regardless of the

CNNs. In this sense, KFPGA intrinsically determines the device

performance, and the normalized throughput is independent of the

CNN model parameters.

With KFPGA, design space exploration is as simple as identi-

fying the intersection point of two curves. We propose a design

chart (Figure 7). The red and blue solid lines are the computation

and communication rooflines bounding the actual performance.

Intersection of the rooflines shows the optimal N for the target

device. Parameters f ,UK , Frow and Fcol are calculated based on N .

Algorithm 3 shows the procedure for a radix-2n FFT architecture.

In the design chart, we use the device coefficient (KStratix−V)
of our experimental platform as reference. For this device, N =

16 is the best configuration. For devices with their coefficients

to 304 for AlexNet and VGG16, and from 320 to 608 for FCN-16s (In

other words, l ′imд of the last convolution layer for the three CNNs

vary from 10 to 19). Figure 9 shows the comparison of computation

complexity for frequency domain convolution using CaP-OaA, OaA

and spatial convolution. Each bar is vertically stacked by the number

of operations for each convolution layer of the CNNs. Figure 10

shows the comparison of the measured throughput on HARP.

When limд is divisible by (N − lkern + 1) (e.g., limд = 224 for

AlexNet and VGG16), performance of OaA is identical to CaP-OaA.

However, in other cases, CaP-OaA delivers much better perfor-

mance than OaA. For example, when limд = 240 for AlexNet,

VGG16 and limд = 352 for FCN-16s, CaP-OaA leads to 2.3×, 1.5×
and 1.7× complexity reduction, and 2.3×, 1.5× and 1.7× throughput
improvement. Furthermore, we observe that the performance of

OaA is highly sensitive to image sizes. For AlexNet and VGG16,

performance drops significantly when the image size increases from

224 to 240. This reflects the padding effect of OaA.

Effect of N . Next, we experiment how selecting various N af-

fects the throughput of the system. Since parameters N and f are

together dependent on the on-chip memory size, by varying N , we

are exploring the effect of loop tiling as well. Figure 11 shows the

normalized throughput of the three CNNs on the design chart when

using N = 8, 16, 32. The corresponding f values are 128, 64, 32.

As predicted by the design chart, N = 16 is the best configu-

ration on the Stratix-V GXA7 device. When N = 8, the increased

computation complexity degrades the performance. When N = 32,

the low data reuse makes external bandwidth the bottleneck. Fur-

thermore, despite the dramatically different network structure, the

normalized throughput of the three CNNs are very close to each

other. This demonstrates the effect of our algorithmic optimization.

7.3 Comparison with State-of-the-Art

For AlexNet and VGG16, we use the ImageNet dataset (limд = 224).

Table 2 summarizes the comparison with state-of-the-art designs.

All the designs except [21] use similar or lower precision data repre-

sentation than our designs. In [21], frequency domain convolution

using the OaA technique was employed. However, their analysis

was based on a metric called "delay-multiplier product" evaluating

convolution of a single image rather than a complete layer. Using

the same FPGA, we show 9.4× (AlexNet) and 5.4× (VGG16) speed

up in throughput as a result of a deeper analysis on frequency do-

main convolution. All other works are based on spatial convolution.

Compared with [18] which uses the same target FPGA and data

representation as this project, we achieve 5.8× speedup. Compared

with [7], [8] and [12], whenwe use the same data representation (16-

bit fixed point), our designs achieve 1.4×, 4.9× and 1.0× speedup,

even though our target device has 14.0×, 3.4× and 5.9× less DSP

resources. Using a device with 5.9× more DSPs, [22] achieves 2.7×
higher throughput than us. One main reason is the difference in

the clock rate. We can not achieve higher clock rate, since HARP

requires the FPGA to operate at exactly 200MHz.

To understand such significant improvement in throughput, we

use [18] as an example to show the improvement breakdown. Out of

the 5.8× improvement, approximately 3× comes from the reduction

in computation complexity (Figure 2b). The remaining 2× comes

from the clock rate improvement. The Hadamard product operation

leads to much less number of operations and much simpler data

flow compared with the sliding window operation.

To the best of our knowledge, this is the first work that accel-

erates FCN-16s on FPGAs. As shown in Figure 10, approximately,

throughput of 550 GOPS is achieved for images of various sizes.

8 RELATED WORK

Accelerating spatial convolution has been extensively studied from

the perspective of loop operation optimization [4, 12] and data flow

optimization [3]. Work in [4] proposed a roofline model to capture

various techniques including loop tiling, unrolling and interchang-

ing. [12] further optimized performance by a thorough design space

exploration. [22] boosted throughput under the OpenCL framework.

Spatial convolution based approaches will eventually be bound by

the computation complexity of the convolution algorithm. On the

other hand, alternatives such as convolution by Winograd trans-

form and frequency domain convolution have been proposed and

implemented [10, 14, 21]. Winograd based approaches do not easily

generalize to CNNs with various kernel window sizes. While the ap-

proaches based on frequency domain convolution are more flexible,

further optimizations to [21] can be performed when processing

high dimensional data of convolution layers (this work).

9 CONCLUSION

We presented a framework for generating high throughput CNN

accelerators. Combining the CaP, OaA and frequency domain loop

tiling techniques together, our framework generates architectures

accelerating diverse CNNs without runtime reconfiguration.

In the future, we will explore the hybrid algorithm combining

convolution in space and frequency domain. Spatial convolution is

as efficient as frequency domain convolution for 1 × 1 kernels. In
such cases, we may switch to spatial convolution which leads to

better hardware utilization. In addition, as techniques have been

developed to make use of the sparsity in spatial convolution, we will

explore if similar techniques can be applied in frequency domain.

10 ACKNOWLEDGEMENTS

This work was supported by the US NSF under grants CNS-1643351,

ACI-1339756 and CCF-1320211. This work is also supported in part

by Intel Strategic Research Alliance funding. Equipment grant from

the Intel Hardware Accelerator Research Program is gratefully

acknowledged.

REFERENCES
[1] 2015. Intel Inc. Xeon+FPGA Platform for the Data Center. (2015). https://www.

ece.cmu.edu/calcm/carl/lib/exe/fetch.php?media=carl15-gupta.pdf
[2] R. Chen, H. Le, and V. K. Prasanna. 2013. Energy efficient parameterized FFT

architecture. In 2013 23rd Intl. Conf. on Field programmable Logic and Applications.
[3] Y. H. Chen, J. Emer, and V. Sze. 2017. Using Dataflow to Optimize Energy

Efficiency of Deep Neural Network Accelerators. IEEE Micro 37, 3 (2017).
[4] Chen Zhang, et al. 2015. Optimizing FPGA-based Accelerator Design for Deep

Convolutional Neural Networks. In Proceedings of the 2015 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays (FPGA ’15). ACM.

[5] Ali Daher, et al. 2010. Overlap-save and overlap-add filters: Optimal design and
comparison. IEEE Transactions on Signal Processing 58, 6 (2010).

[6] P. Duhamel and H. Hollmann. 1984. ‘Split radix’ FFT algorithm. Electronics Letters
20, 1 (January 1984).

[7] Huimin Li, et al. 2016. A high performance FPGA-based accelerator for large-
scale convolutional neural networks. In 2016 26th International Conference on
Field Programmable Logic and Applications (FPL).

